101 research outputs found

    A Multivariate Investigation of the Motivational, Academic, and Well-Being Characteristics of First-Generation and Continuing-Generation College Students

    Get PDF
    Prior research has noted differences in motivational, academic, and well-being factors between first-generation and continuing-education students. However, past investigations have primarily overlooked the interactive influence of protective and risk factors when comparing the characteristics of first-generation and continuing-education students. Thus, the current study adopted a multivariate approach to gain a more nuanced understanding of the influence of generational status on students\u27 self-regulated learning capabilities, academic anxiety, sense of belonging, academic barriers, mental health concerns, and satisfaction with life. University students (N = 432, 67.46% Caucasian, 87.55% female, Age = 28.10 ± 9.46) completed the Cognitive Test Anxiety Scale-2nd Edition, Satisfaction with Life Scale, Sense of Belonging items, the learning strategies section of the Motivated Strategies for Learning Questionnaire, DASS-21, and BARRIERS Scale. Using Multivariate Analysis of Variance, we determined that first and continuing-generation students differed in satisfaction with life, cognitive test anxiety, psychological distress, use of elaborative rehearsal, critical thinking capabilities, efforts to manage time and study environment, and maintaining attention when working on academic tasks. Our discussion focuses on practical methods that can be used to help first-generation students navigate barriers to academic success

    Preventing Stress Among Undergraduate Learners: The Importance of Emotional Intelligence, Resilience, and Emotion Regulation

    Get PDF
    In the current investigation, we examined the association among emotional intelligence, emotional regulation tendencies, resilience, and perceived stress within a sample of undergraduate students. Participants (N = 277, 71% Female, 55% White) completed the Brief Emotional Intelligence Scale, Emotion Regulation Questionnaire, Brief Resilience Scale, and Perceived Stress Scale. Using path analysis techniques, we demonstrated that resilience was a negative predictor of perceived stress. Additionally, our results indicated that the use of cognitive reappraisal exerted an indirect influence on perceived stress through resilience. Finally, the current investigation provided evidence that emotional intelligence exerts an indirect influence on stress through both cognitive reappraisal and resilience. We believe the results of the current understanding expand our understanding of the determinants of effective emotional information processing and have implications for intervention efforts designed to reduce perceived stress within university-based samples

    Geographic variation and risk factors for teenage pregnancy in Uganda

    Get PDF
    Background: Teenage pregnancy is a global health issue with high rates in sub-Saharan Africa. In Uganda, teenage pregnancy is a public and community health issue. Objectives: This study hypothesized that there would be regional variations in rates, risk factors and trends of teenage pregnancy in Uganda. Methods: Data were analyzed from the Uganda Demographic and Health Surveys (UDHS) in 2006 and 2011. The outcome of interest was current pregnancy for females 15 to 19 years of age at the time of the survey. Bivariate analysis was performed for each year to examine the rate and trends of pregnancy by various demographic characteristics. Logistic regression was conducted to assess the association between teenage pregnancy and sociodemographic variables. Results: Uganda\u2019s rate of teenage pregnancy increased from 7.3/1000 in 2006 to 8.1/1000 in 2011. The East Central region consistently had the highest rates than other regions. In 2006, teenage pregnancy was significantly associated with being married, living with a partner or separated, as compared to those who were single. Marital and wealth status were also significant predictors of teenage pregnancy based on the 2011 survey. Conclusion: The rate of teenage pregnancy in Uganda is high and the trend demonstrated regional variation. Future interventions could focus on regions with high poverty and low education

    Lower Extremity Biomechanics Are Altered Across Maturation in Sport-Specialized Female Adolescent Athletes

    Get PDF
    Sport specialization is a growing trend in youth athletes and may contribute to increased injury risk. The neuromuscular deficits that often manifest during maturation in young, female athletes may be exacerbated in athletes who specialize in a single sport. The purpose of this study was to investigate if sport specialization is associated with increased lower extremity biomechanical deficits pre- to post-puberty in adolescent female athletes. Seventy-nine sport-specialized female adolescent (Mean ± SD age = 13.4 ± 1.8 years) basketball, soccer, and volleyball athletes were identified and matched with seventy-nine multi-sport (soccer, basketball, and volleyball) female athletes from a database of 1,116 female adolescent basketball, soccer, and volleyball athletes who were enrolled in one of two large prospective, longitudinal studies. The athletes were assessed over two visits (Mean ± SD time = 724.5 ± 388.7 days) in which they were classified as pre-pubertal and post-pubertal, respectively. Separate 2 × 2 analyses of covariance were used to compare sport-specialized and multi-sport groups and dominant/non-dominant limbs with respect to pubertal changes in peak knee sagittal, frontal, and transverse plane joint angular measures and moments of force recorded while performing a drop vertical jump task. The sport-specialized group were found to exhibit significantly larger post-pubertal increases in peak knee abduction angle (p = 0.005) and knee abduction moment (p = 0.006), as well as a smaller increase in peak knee extensor moment (p = 0.032) during landing when compared to the multi-sport group. These biomechanical changes are indicative of potentially compromised neuromuscular control that may increase injury risk pre- to post-puberty in sport-specialized female athletes. Consideration of maturation status may be an important factor in assessing the injury risk profiles of adolescent athletes who specialize in sport

    Hydrodynamics in a Degenerate, Strongly Attractive Fermi Gas

    Get PDF
    In summary, we use all-optical methods with evaporative cooling near a Feshbach resonance to produce a strongly interacting degenerate Fermi gas. We observe hydrodynamic behavior in the expansion dynamics. At low temperatures, collisions may not explain the expansion dynamics. We observe hydrodynamics in the trapped gas. Our observations include collisionally-damped excitation spectra at high temperature which were not discussed above. In addition, we observe weakly damped breathing modes at low temperature. The observed temperature dependence of the damping time and hydrodynamic frequency are not consistent with collisional dynamics nor with collisionless mean field interactions. These observations constitute the first evidence for superfluid hydrodynamics in a Fermi gas

    Reliability of 3-Dimensional Measures of Single-Leg Cross Drop Landing Across 3 Different Institutions: Implications for Multicenter Biomechanical and Epidemiological Research on ACL Injury Prevention

    Get PDF
    Background: Anterior cruciate ligament (ACL) injuries are physically and financially devastating but affect a relatively small percentage of the population. Prospective identification of risk factors for ACL injury necessitates a large sample size; therefore, study of this injury would benefit from a multicenter approach. Purpose: To determine the reliability of kinematic and kinetic measures of a single-leg cross drop task across 3 institutions. Study Design: Controlled laboratory study. Methods: Twenty-five female high school volleyball players participated in this study. Three-dimensional motion data of each participant performing the single-leg cross drop were collected at 3 institutions over a period of 4 weeks. Coefficients of multiple correlation were calculated to assess the reliability of kinematic and kinetic measures during the landing phase of the movement. Results: Between-centers reliability for kinematic waveforms in the frontal and sagittal planes was good, but moderate in the transverse plane. Between-centers reliability for kinetic waveforms was good in the sagittal, frontal, and transverse planes. Conclusion: Based on these findings, the single-leg cross drop task has moderate to good reliability of kinematic and kinetic measures across institutions after implementation of a standardized testing protocol. Clinical Relevance: Multicenter collaborations can increase study numbers and generalize results, which is beneficial for studies of relatively rare phenomena, such as ACL injury. An important step is to determine the reliability of risk assessments across institutions before a multicenter collaboration can be initiated

    Real‐time biofeedback integrated into neuromuscular training reduces high‐risk knee biomechanics and increases functional brain connectivity: A preliminary longitudinal investigation

    Full text link
    Prospective evidence indicates that functional biomechanics and brain connectivity may predispose an athlete to an anterior cruciate ligament injury, revealing novel neural linkages for targeted neuromuscular training interventions. The purpose of this study was to determine the efficacy of a real‐time biofeedback system for altering knee biomechanics and brain functional connectivity. Seventeen healthy, young, physically active female athletes completed 6 weeks of augmented neuromuscular training (aNMT) utilizing real‐time, interactive visual biofeedback and 13 served as untrained controls. A drop vertical jump and resting state functional magnetic resonance imaging were separately completed at pre‐ and posttest time points to assess sensorimotor adaptation. The aNMT group had a significant reduction in peak knee abduction moment (pKAM) compared to controls (p = .03, d = 0.71). The aNMT group also exhibited a significant increase in functional connectivity between the right supplementary motor area and the left thalamus (p = .0473 after false discovery rate correction). Greater percent change in pKAM was also related to increased connectivity between the right cerebellum and right thalamus for the aNMT group (p = .0292 after false discovery rate correction, r2 = .62). No significant changes were observed for the controls (ps > .05). Our data provide preliminary evidence of potential neural mechanisms for aNMT‐induced motor adaptations that reduce injury risk. Future research is warranted to understand the role of neuromuscular training alone and how each component of aNMT influences biomechanics and functional connectivity.Emergent evidence indicates that the risk of anterior cruciate ligament (ACL) injury is, in part, due to central nervous system alterations that could be targeted using neural mechanistic sensorimotor‐based treatments. Young female athletes completed 6 weeks of neuromuscular training while interacting with a real‐time, visual biofeedback stimulus. Our training was designed to reduce the risk of by (a) promoting injury‐resistant movement and (b) strengthening brain functional connectivity. Our data not only indicated that athletes’ biomechanics and brain connectivity were improved following training, but the observed biomechanical improvements were related to distinct, strengthened connectivity within regions important for sensorimotor control. This study supports the use of real‐time biofeedback systems to reduce the risk of ACL injury by leveraging neuroplasticity.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154933/1/psyp13545_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154933/2/psyp13545.pd

    RGS21, A Regulator of Taste and Mucociliary Clearance?

    Get PDF
    Motile cilia of airway epithelial cells help to expel harmful inhaled material. Activation of bitterant-responsive G protein-coupled receptors (GPCRs) is believed to potentiate cilia beat frequency and mucociliary clearance. In this study, we investigated whether regulator of G protein signaling-21 (RGS21) has the potential to modulate signaling pathways connected to airway mucociliary clearance, given that RGS proteins modulate GPCR signaling by acting as GTPase-accelerating proteins (GAPs) for the Gα subunits of heterotrimeric G proteins

    Bone Marrow Transplantation for Feline Mucopolysaccharidosis I

    Get PDF
    Severe mucopolysaccharidosis type I (MPS I) is a fatal neuropathic lysosomal storage disorder with significant skeletal involvement. Treatment involves bone marrow transplantation (BMT), and although effective, is suboptimal, due to treatment sequelae and residual disease. Improved approaches will need to be tested in animal models and compared to BMT. Herein we report on bone marrow transplantation to treat feline mucopolysaccharidosis I (MPS I). Five MPS I stably engrafted kittens, transplanted with unfractionated bone marrow (6.3 × 107–1.1 × 109 nucleated bone marrow cells per kilogram) were monitored for 13–37 months post-engraftment. The tissue total glycosaminoglycan (GAG) content was reduced to normal levels in liver, spleen, kidney, heart muscle, lung, and thyroid. Aorta GAG content was between normal and affected levels. Treated cats had a significant decrease in the brain GAG levels relative to untreated MPS I cats and a paradoxical decrease relative to normal cats. The α-l-iduronidase (IDUA) activity in the livers and spleens of transplanted MPS I cats approached heterozygote levels. In kidney cortex, aorta, heart muscle, and cerebrum, there were decreases in GAG without significant increases in detectable IDUA activity. Treated animals had improved mobility and decreased radiographic signs of disease. However, significant pathology remained, especially in the cervical spine. Corneal clouding appeared improved in some animals. Immunohistochemical and biochemical analysis documented decreased central nervous system ganglioside storage. This large animal MPS I study will serve as a benchmark of future therapies designed to improve on BMT
    • 

    corecore